Sebanyak 34629 item atau buku ditemukan

Multivariate Time Series Analysis

With R and Financial Applications

An accessible guide to the multivariate time series toolsused in numerous real-world applications Multivariate Time Series Analysis: With R and FinancialApplications is the much anticipated sequel coming from one ofthe most influential and prominent experts on the topic of timeseries. Through a fundamental balance of theory and methodology,the book supplies readers with a comprehensible approach tofinancial econometric models and their applications to real-worldempirical research. Differing from the traditional approach to multivariate timeseries, the book focuses on reader comprehension by emphasizingstructural specification, which results in simplified parsimoniousVAR MA modeling. Multivariate Time Series Analysis: With R andFinancial Applications utilizes the freely available Rsoftware package to explore complex data and illustrate relatedcomputation and analyses. Featuring the techniques and methodologyof multivariate linear time series, stationary VAR models, VAR MAtime series and models, unitroot process, factor models, andfactor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce thepresented content • User-friendly R subroutines and research presentedthroughout to demonstrate modern applications • Numerous datasets and subroutines to provide readerswith a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbookfor graduate-level courses on time series and quantitative financeand upper-undergraduate level statistics courses in time series.The book is also an indispensable reference for researchers andpractitioners in business, finance, and econometrics.

An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential ...

Multivariate Statistical Methods

A First Course

Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is pointing out the analogy between a common univariate statistical technique and the corresponding multivariate method. Many computer examples--drawing on SAS software --are used as demonstrations. Throughout the book, the computer is used as an adjunct to the presentation of a multivariate statistical method in an empirically oriented approach. Basically, the model adopted in this book is to first present the theory of a multivariate statistical method along with the basic mathematical computations necessary for the analysis of data. Subsequently, a real world problem is discussed and an example data set is provided for analysis. Throughout the presentation and discussion of a method, many references are made to the computer, output are explained, and exercises and examples with real data are included.

An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles.

Matrix-Based Introduction to Multivariate Data Analysis

This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.

This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms.

Multivariate Geostatistics

An Introduction with Applications

This fully revised third edition introduces geostatistics by emphasising the multivariate aspects for scientists, engineers and statisticians. Geostatistics offers a variety of models, methods and techniques for the analysis, estimation and display of multivariate data distributed in space or time. The text contains a brief review of statistical concepts, a detailed introduction to linear geostatistics, and an account of 3 basic methods of multivariate analysis. Applications from different areas of science, as well as exercises with solutions, are provided to help convey the general ideas. The introductory chapter has been divided into two separate sections for clarity. The final section deals with non-stationary geostatistics.

This book presents a brief review of statistical concepts, a detailed introduction to linear geostatistics, and an account of three methods of multivariate analysis.

Using Multivariate Statistics

Eager to learn everything she can about her new abilities as an Immortal, Ever turns to her beloved Damen to show her the way. But just as her powers are increasing, Damen's are waning. In an attempt to save him, Ever travels to the magical dimension of Summerland, where she learns the secrets of Damen's tortured past; a past which he has always kept hidden from her. But in her quest to cure Damen, Ever discovers an ancient text that details the workings of time. Now Ever must choose between turning back the past and saving her family from the accident that claimed their lives--or staying in the present and saving Damen, who grows sicker every day...

Eager to learn everything she can about her new abilities as an Immortal, Ever turns to her beloved Damen to show her the way.

Applied Statistics: From Bivariate Through Multivariate Techniques

From Bivariate Through Multivariate Techniques

Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.

Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant ...

Aspects of Multivariate Statistical Theory

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . . the wealth of material on statistics concerning the multivariate normal distribution is quite exceptional. As such it is a very useful source of information for the general statistician and a must for anyone wanting to penetrate deeper into the multivariate field." -Mededelingen van het Wiskundig Genootschap "This book is a comprehensive and clearly written text on multivariate analysis from a theoretical point of view." -The Statistician Aspects of Multivariate Statistical Theory presents a classical mathematical treatment of the techniques, distributions, and inferences based on multivariate normal distribution. Noncentral distribution theory, decision theoretic estimation of the parameters of a multivariate normal distribution, and the uses of spherical and elliptical distributions in multivariate analysis are introduced. Advances in multivariate analysis are discussed, including decision theory and robustness. The book also includes tables of percentage points of many of the standard likelihood statistics used in multivariate statistical procedures. This definitive resource provides in-depth discussion of the multivariate field and serves admirably as both a textbook and reference.

As such it is a very useful source of information for the general statistician and a must for anyone wanting to penetrate deeper into the multivariate field." —Mededelingen van het Wiskundig Genootschap "This book is a comprehensive and ...

Applied Multivariate Statistical Analysis

& This market leader offers a readable introduction to the statistical analysis of multivariate observations. Gives readers the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Starts with a formulation of the population models, delineates the corresponding sample results, and liberally illustrates everything with examples. & Offers an abundance of examples and exercises based on real data.& Appropriate for experimental scientists in a variety of disciplines.

& This market leader offers a readable introduction to the statistical analysis of multivariate observations.

Advanced and Multivariate Statistical Methods

Practical Application and Interpretation

Ideal for non-math majors, Advanced and Multivariate Statistical Methods teaches students to interpret, present, and write up results for each statistical technique without overemphasizing advanced math. This highly applied approach covers the why, what, when and how of advanced and multivariate statistics in a way that is neither too technical nor too mathematical. Students also learn how to compute each technique using SPSS software. New to the Sixth Edition Instructor ancillaries are now available with the sixth edition. All SPSS directions and screenshots have been updated to Version 23 of the software. Student learning objectives have been added as a means for students to target their learning and for instructors to focus their instruction. Key words are reviewed and reinforced in the end of chapter material to ensure that students understand the vocabulary of advanced and multivariate statistics.

Students also learn how to compute each technique using SPSS software. New to the Sixth Edition Instructor ancillaries are now available with the sixth edition.

Analysis of Multivariate Social Science Data, Second Edition

Drawing on the authors’ varied experiences working and teaching in the field, Analysis of Multivariate Social Science Data, Second Editionenables a basic understanding of how to use key multivariate methods in the social sciences. With updates in every chapter, this edition expands its topics to include regression analysis, confirmatory factor analysis, structural equation models, and multilevel models. After emphasizing the summarization of data in the first several chapters, the authors focus on regression analysis. This chapter provides a link between the two halves of the book, signaling the move from descriptive to inferential methods and from interdependence to dependence. The remainder of the text deals with model-based methods that primarily make inferences about processes that generate data. Relying heavily on numerical examples, the authors provide insight into the purpose and working of the methods as well as the interpretation of data. Many of the same examples are used throughout to illustrate connections between the methods. In most chapters, the authors present suggestions for further work that go beyond conventional exercises, encouraging readers to explore new ground in social science research. Requiring minimal mathematical and statistical knowledge, this book shows how various multivariate methods reveal different aspects of data and thus help answer substantive research questions.

Requiring minimal mathematical and statistical knowledge, this book shows how various multivariate methods reveal different aspects of data and thus help answer substantive research questions.