Sebanyak 1 item atau buku ditemukan

Enhanced Fluctuation-driven Neutrino Scattering Behind Supernova Shocks

"We describe a general formalism for computing scattering rates of weak probes in macroscopic systems, based on a density matrix formalism. We show that weak probes in general scatter off fluctuations in the medium. In the limit that the neutrino wavelength is much larger than the lengthscale of the fluctuations, we show that the scattering rate can be calculated from knowledge of the equation of state of the medium through which the neutrinos travel. Using radial profiles of a post-bounce, shocked supernova core and a well-established equation of state for nuclear matter we compute these scattering rates for various times in the vicinity of the shock. We find that, behind the shock, these correlative effects can enhance neutrino scattering rates by factors of 8 compared to standard calculations which ignore interactions in the nuclear medium. These results may have implications for how efficiently neutrinos can restart a stalled shock, although firm conclusions regarding the ultimate effects of such an enhancement await full hydrodynamic simulations, which are not performed here." --

"We describe a general formalism for computing scattering rates of weak probes in macroscopic systems, based on a density matrix formalism. We show that weak probes in general scatter off fluctuations in the medium.