Sebanyak 2 item atau buku ditemukan

Biological Data Mining

Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplinary data mining researchers who cover state-of-the-art biological topics. The first section of the book discusses challenges and opportunities in analyzing and mining biological sequences and structures to gain insight into molecular functions. The second section addresses emerging computational challenges in interpreting high-throughput Omics data. The book then describes the relationships between data mining and related areas of computing, including knowledge representation, information retrieval, and data integration for structured and unstructured biological data. The last part explores emerging data mining opportunities for biomedical applications. This volume examines the concepts, problems, progress, and trends in developing and applying new data mining techniques to the rapidly growing field of genome biology. By studying the concepts and case studies presented, readers will gain significant insight and develop practical solutions for similar biological data mining projects in the future.

This volume examines the concepts, problems, progress, and trends in developing and applying new data mining techniques to the rapidly growing field of genome biology.

Biological Data Mining in Protein Interaction Networks

"The goal of this book is to disseminate research results and best practices from cross-disciplinary researchers and practitioners interested in, and working on bioinformatics, data mining, and proteomics"--Provided by publisher.

In this tutorial chapter, the author reviews basics about frequent pattern mining
algorithms, including itemset mining, association rule mining, and graph mining.
These algorithms can find frequently appearing substructures in discrete data.