Sebanyak 2419 item atau buku ditemukan

Pengembangan Media dan Alat Peraga: Konsep & Aplikasi dalam Pembelajaran IPA

Buku ini bisa digunakan sebagai pendamping mata kuliah dan juga untuk memenuhi kebutuhan peserta didik yang ingin belajar di bidang Pengembangan Media dan Alat Peraga Ilmu Pengetahuan Alam serta keterampilan berpikir komputasi (computational thinking). Buku ini berisi materi mengenai penjelasan media dan alat peraga IPA, peran, fungsi, aspek kelayakan, hingga aplikasinya seperti pembuatan insektarium dan herbarium, pembuatan powerpoint interaktif, serta media digital Scratch.

Buku ini bisa digunakan sebagai pendamping mata kuliah dan juga untuk memenuhi kebutuhan peserta didik yang ingin belajar di bidang Pengembangan Media dan Alat Peraga Ilmu Pengetahuan Alam serta keterampilan berpikir komputasi ...

Data Mining and Data Warehousing

Principles and Practical Techniques

Provides a comprehensive textbook covering theory and practical examples for a course on data mining and data warehousing.

Provides a comprehensive textbook covering theory and practical examples for a course on data mining and data warehousing.

Introduction to Data Mining and Analytics

Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field. The exponentially increasing rate at which data is generated creates a corresponding need for professionals who can effectively handle its storage, analysis, and translation.

Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field.

Data Mining

The Textbook

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases.

Discovering Knowledge in Data

An Introduction to Data Mining

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

This book provides the tools needed to thrive in today’s big data world.

Encyclopedia of Machine Learning and Data Mining

This authoritative, expanded and updated second edition of Encyclopedia of Machine Learning and Data Mining provides easy access to core information for those seeking entry into any aspect within the broad field of Machine Learning and Data Mining. A paramount work, its 800 entries - about 150 of them newly updated or added - are filled with valuable literature references, providing the reader with a portal to more detailed information on any given topic.Topics for the Encyclopedia of Machine Learning and Data Mining include Learning and Logic, Data Mining, Applications, Text Mining, Statistical Learning, Reinforcement Learning, Pattern Mining, Graph Mining, Relational Mining, Evolutionary Computation, Information Theory, Behavior Cloning, and many others. Topics were selected by a distinguished international advisory board. Each peer-reviewed, highly-structured entry includes a definition, key words, an illustration, applications, a bibliography, and links to related literature.The entries are expository and tutorial, making this reference a practical resource for students, academics, or professionals who employ machine learning and data mining methods in their projects. Machine learning and data mining techniques have countless applications, including data science applications, and this reference is essential for anyone seeking quick access to vital information on the topic.

This authoritative, expanded and updated second edition of Encyclopedia of Machine Learning and Data Mining provides easy access to core information for those seeking entry into any aspect within the broad field of Machine Learning and Data ...

Introduction to Data Mining

Introduction to Data Mining, Second Edition, is intended for use in the Data Mining course. It is also suitable for individuals seeking an introduction to data mining. The text assumes only a modest statistics or mathematics background, and no database knowledge is needed. Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: Present Fundamental Concepts and Algorithms: Written for the beginner, this text provides both theoretical and practical coverage of all data mining topics. Support Learning: Instructor resources include solutions for exercises and a complete set of lecture slides.

This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.

Data Mining

Concepts and Techniques

Data Mining: Concepts and Techniques, Fourth Edition provides the theories and methods for processing gathered data or information to be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data, known as KDD. It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, the authors explain the methods of knowing, preprocessing, processing, and warehousing data. They then present information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for computer science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques needed to get the most out of your data

Concepts and methods for deep learning are systematically introduced as one chapter. Finally, the book covers the trends, applications, and research frontiers in data mining.

Principles of Data Mining

This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self-study, it aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. Principles of Data Mining includes descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift. The expanded fourth edition gives a detailed description of a feed-forward neural network with backpropagation and shows how it can be used for classification.

This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas.

Learn Data Mining Through Excel

A Step-by-Step Approach for Understanding Machine Learning Methods

Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn Comprehend data mining using a visual step-by-step approach Build on a theoretical introduction of a data mining method, followed by an Excel implementation Unveil the mystery behind machine learning algorithms, making a complex topic accessible to everyone Become skilled in creative uses of Excel formulas and functions Obtain hands-on experience with data mining and Excel Who This Book Is For Anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is recommended.

These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel.